Frobenius-Schur Indicator for Categories with Duality

نویسنده

  • Kenichi Shimizu
چکیده

We introduce the Frobenius–Schur indicator for categories with duality to give a category-theoretical understanding of various generalizations of the Frobenius–Schur theorem including that for semisimple quasi-Hopf algebras, weak Hopf C∗-algebras and association schemes. Our framework also clarifies a mechanism of how the “twisted” theory arises from the ordinary case. As a demonstration, we establish twisted versions of the Frobenius–Schur theorem for various algebraic objects. We also give several applications to the quantum SL2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality, Central Characters, and Real-valued Characters of Finite Groups of Lie Type

We prove that the duality operator preserves the Frobenius–Schur indicators of characters of connected reductive groups of Lie type with connected center. This allows us to extend a result of D. Prasad which relates the Frobenius–Schur indicator of a regular real-valued character to its central character. We apply these results to compute the Frobenius–Schur indicators of certain real-valued, i...

متن کامل

S4-symmetry of 6j-symbols and Frobenius--Schur indicators in rigid monoidal C-categories

We show that a left-rigid monoidal C-category with irreducible monoidal unit is also a sovereign and spherical category. Defining a Frobenius--Schur type indicator we obtain selection rules for the fusion coefficients of irreducible objects. As a main result we prove S4-invariance of 6j-symbols in such a category.

متن کامل

A Higher Frobenius-schur Indicator Formula for Group-theoretical Fusion Categories

Group-theoretical fusion categories are defined by data concerning finite groups and their cohomology: A finite group G endowed with a three-cocycle ω, and a subgroup H ⊂ G endowed with a two-cochain whose coboundary is the restriction of ω. The objects of the category are G-graded vector spaces with suitably twisted H-actions; the associativity of tensor products is controlled by ω. Simple obj...

متن کامل

Rank 4 premodular categories

We consider the classification problem for rank 4 premodular categories. We uncover a formula for the 2 Frobenius–Schur indicator of a premodular category, and complete the classification of rank 4 premodular categories (up to Grothendieck equivalence). In the appendix we show rank finiteness for premodular categories.

متن کامل

Central Invariants and Higher Indicators for Semisimple Quasi-hopf Algebras

In this paper, we define the higher Frobenius-Schur (FS-)indicators for finite-dimensional modules of a semisimple quasi-Hopf algebra H via the categorical counterpart developed in a 2005 preprint. When H is an ordinary Hopf algebra, we show that our definition coincides with that introduced by Kashina, Sommerhäuser, and Zhu. We find a sequence of gauge invariant central elements of H such that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012